

Conceptual Site Based Stormwater Management Plan

RIVA VUE ESTATE

PLANNING PROPOSAL STAGE 4

NEWLAND DEVELOPERS PTY LTD

NOVEMBER 2011 REVISION 03

CIVIL

WATER

STRUCTURAL

INFRASTRUCTURE

PROJECT DELIVERY

URBAN DEVELOPMENT

BRISBANE

GLADSTONE

GOLD COAST

T 07 5571 2232 F 07 5503 1672 E info@yeats.com.au W www.yeats.com.au

Level 1, 193 Ferry Road SOUTHPORT QLD 4217

PO Box 9122 GOLD COAST MC QLD 9726

ABN 99 282 106 832

This document has been prepared for the sole benefit, use and information of Yeats Consulting Pty Ltd. The liability of Yeats Consulting Pty Ltd and its employees in respect of the information contained in the report shall not extend to any third party.

This document has been reviewed and approved by the following appropriately qualified and experienced Registered Professional Engineer of Queensland (RPEQ)

.

Brett Taylor (RPEQ No. 7817)

Yeats Consulting Pty Ltd Level 1, 193 Ferry Road Southport Qld 4215

PH: 07 5571 2232 FAX: 07 5503 1672

www.yeats.com.au

Document history and status

Revision	Date issued	Reviewed by	Approved by	Date approved	Revision type
01	17/06/2011	SW	BT	17/06/2011	Draft Issue
02	20/07/2011	SW	BT	20/07/2011	Final Issue
03	24/11/2011	AC	BT	24/11/2011	Amended Quality Strategy

Distribution of copies

Revision	Hard Copies	Electronic	Issued to
01	1	1.pdf	Newland Developers
02	1	1.pdf	Newland Developers
03	1	1.pdf	Newland Developers

Printed:	24 November 2011
Last saved:	24/11/2011 09:17
File name:	G:\YC0291 Riva Vue Estate\07 Reports\01 SBSMP\YC0291-R003-Riva Vue Estate-Murwillumbah-Stage 4 Conceptual SBSMP.docx
Author:	Kate Ermolova
Project manager:	Garth Osmond
Name of organisation:	Yeats Consulting Pty Ltd
Name of project:	Riva Vue Estate – Stage 4 Planning Proposal
Name of document:	YC0291-R003-Riva Vue Estate-Murwillumbah-Stage 4 Conceptual SBSMP.docx
Document version:	REV 03
Project number:	YC0291

Contents

1	Introduction	3
1.1	Background and Philosophy	8
1.2	Site Description	8
	1.2.1 Location	8
	1.2.2 Topography	8
2	Proposed Development 10)
3	Hydrology11	1
3.1	Hydrologic Objectives1	1
3.2	Background1	1
	3.2.1 Data Collection	1
	3.2.2 Design Rainfall	1
	3.2.3 XP-Rafts Model Parameters	2
	3.2.4 AP-Raits Model Validation	2
2 2	Hydrologic Analysis	2
5.5	3.3.1 Pre-development Hydrology	2
	3.3.2 Post-development Hydrology	3
	3.3.3 Flow Increase Due to Development	4
3.4	Stormwater Quantity Strategy1	5
4	Trunk Drainage Infrastructure Analysis	5
4.1	Background	6
4.2	Existing Culvert	6
4.3	Proposed Works	6
5	Stormwater Quality Management Plan 17	7
5.1	Introduction	7
5.2	Relevant Water Quality Objectives	7
5.3	Stormwater Quality Catchments	7
5.4	Proposed Treatment Measures	8
	5.4.1 Rainwater Tanks	8
	5.4.2 Bio-retention Basins	9
5.5	5.4.2 Bio-retention Basins	9 9
5.5	5.4.2 Bio-retention Basins	9 9 9
5.5	5.4.2Bio-retention Basins.10MUSIC Modelling105.5.1Meteorological Data105.5.2Source Nodes20	9 9 9 0
5.5 5.6	5.4.2Bio-retention Basins.10MUSIC Modelling105.5.1Meteorological Data105.5.2Source Nodes20Performance Assessment20	9 9 0 0
5.5 5.6 5.7	5.4.2 Bio-retention Basins. 19 MUSIC Modelling 19 5.5.1 Meteorological Data 19 5.5.2 Source Nodes 20 Performance Assessment 20 Water Quality Objectives Performance 21	9 9 0 1

8	References	25
7	Summary and Conclusion	24
6.2	Maintenance	23
6.1	Monitoring	23

Appendices

A	Stage 4 Concept Plan
---	----------------------

- B Stormwater Catchment Plans
- C Rational Method Calculations
- D Stormwater Management Layout
- E Gilbert & Sutherland Catchment Boundaries and Stormwater Treatment Measures
- F Culvert Analysis
- G MUSIC Modelling Inputs

List of Tables

11 12 13 13
12 13 13
13 13
. 13
14
14
14
17
17
18
20
20
20
21
21
21

List of Figures

Figure 1.1	Site Location (Source: Google Maps)	9
Figure 1.2	Site Aerial Photo (Source: Google Maps)	9
Figure 5.1	Bio-retention Basin – Typical Section 1	9

1 Introduction

1.1 Background and Philosophy

Yeats Consulting Pty Ltd (Yeats) has been engaged by Newland Developers Pty Ltd to undertake a Site Based Stormwater Management Plan for Stage 4 of the Riva Vue Estate located at Barnby Street, Murwillumbah, within the local authority of Tweed Shire Council (TSC).

This plan addresses the proposed stormwater management strategy, including:

- Pre and post development flows for the 5 and 100 year return interval storms;
- Preliminary design of Stormwater Management systems; and
- Nomination of the legal points of discharge.

1.2 Site Description

1.2.1 Location

Street Address -	Rous River Way, Murwillumbah (Refer Figure 1.1)
RP Description -	Part Lot 332 DP 1158142
Site Area -	10.80 Ha
Proposed Use -	Residential
Local Authority -	Tweed Shire Council (TSC)

Refer to Figure 1.1 for the site location.

1.2.2 Topography

The existing site is predominantly grassed open space; it comprises of an elevated ridge with scattered vegetation to the south but is predominantly low lying land. The site grades away from Rous River Drive, towards the Rous River to the north. One existing natural gully currently traverses the centre of the site. Additionally, an existing open drain crosses the subject site adjacent to the north-western boundary and directs the up-stream stormwater run-off towards the Rous River. The site reaches a maximum RL of approximately 15.5m to the south adjacent to the northern side of the Rous River Way and a minimum RL of approximately 1.0m within the open drain at the north-eastern corner.

Existing stormwater run-off is currently conveyed overland towards the northern boundary and into the open drain before discharging into the Rous River.

Refer to Figure 1.2 for the existing aerial view.

Figure 1.1 Site Location (Source: Google Maps)

Figure 1.2 Site Aerial Photo (Source: Google Maps)

2 Proposed Development

The proposal is for a rezoning/planning proposal on Lot 332 on DP1158142. The development is part of a master plan for Riva Vue Estate and is a continuation of an existing approval for 96 allotments spread over three stages.

Refer to Appendix A for a conceptual development layout that has been provided for information purposes only and is subject to detailed design and survey.

3 Hydrology

3.1 Hydrologic Objectives

Hydrologic objectives for the site have been set in accordance with Tweed Shire Council Development Design Specification D5, Section D5.02, and the Queensland Urban Drainage Manual (QUDM), including but not limited to:

- To ensure that inundation of private and public buildings located in flood-prone areas occurs only on rare occasions and that, in such events, surface flow routes convey floodwaters below the prescribed velocity/depth limits;
- To provide convenience and safety for pedestrians and traffic in frequent stormwater flows by controlling those flows within prescribed limits;
- To ensure a development does not drain areas nearby zoned as Wetlands (Environmental Protection);
- No adverse impact on adjoining or downstream properties; and
- The proposed development shall ensure that all stormwater drainage is directed to a Lawful Point of Discharge in accordance with QUDM Section 3.02.

3.2 Background

The analysis of surface water runoff from the subject site was performed using the non-linear runoff routing program XP-Rafts.

The XP-RAFTS model involved analysis of separate sub catchments, derivation of various physical properties of the sub catchments and assembly of the sub catchments by way of a nodal network.

Appendix B illustrates the catchment sub-division as used for the XP-Rafts hydrologic modelling.

3.2.1 Data Collection

Data sourced and used in this hydraulic impact assessment includes:

- Site specific topographic survey;
- Site visit; and
- Council supplied contour information of the site surrounding area.

3.2.2 **Design Rainfall**

The design rainfall Intensity-Frequency Duration (IFD) data for storm events up to the 100 year Average Recurrence Interval (ARI) flood event were derived based upon the procedures outlined in Book 2 of the Australian Rainfall and Runoff (AR&R) 2001 edition. The design IFD data for the catchment is summarised below in Table 3.1 below.

Table 3.1 IFD Data for Murwillumba	зh
------------------------------------	----

2-Yr ARI Intensities	50-Yr ARI Intensities	Skewness and Geographical Factors
${}^{2}I_{1} = 50.11$	⁵⁰ I ₁ =93.52	Skewness, G = 0.05
${}^{2}I_{12} = 11.32$	${}^{50}I_{12} = 25.33$	Geographical Factor, $F_2 = 4.41$

Riva Vue Estate – Stage 4 Planning Proposal

Ref: YC0291-R003-Riva Vue Estate-Murwillumbah-Stage 4 Conceptual SBSMP.docx

2-Yr ARI Intensities	50-Yr ARI Intensities	Skewness and Geographical Factors
${}^{2}I_{72} = 3.7$	${}^{50}I_{72} = 8.63$	Geographical Factor, $F_{50} = 17.07$

Rainfall temporal patterns used in the XP-Rafts analysis were also prepared in accordance with Australian Rainfall and Runoff (AR&R), 2001 edition.

3.2.3 XP-Rafts Model Parameters

Rainfall loss for each sub-catchment was applied using an initial and continuing rainfall loss model. Design loss parameters for the XP-Rafts model were based on guideline values as recommended by Book 3 of Australian Rainfall and Runoff, and other industry standards. The adopted loss parameters applied for the XP-Rafts model are summarised in Table 3.2 below.

ARI (years)	Pervious	Areas	Impervio	us Areas
	Initial Loss	Continuing Loss	Initial Loss	Continuing Loss
	(mm)	(mm)	(mm)	(mm)
2,5	15	2.5	1	0
10,20	10	2.5	1	0
50, 100	0	2.5	0	0

 Table 3.2
 Adopted XP-Rafts Initial and Continuing Loss Parameters

3.2.4 XP-Rafts Model Validation

Calibration of the XP-Rafts hydrological model was achieved by comparing XP-Rafts flow rates to rational method calculations.

The rational method adopted a C_{10} coefficient of runoff ranging from 0.74 to 0.84, depending on the percentage impervious for the individual catchments, for the pre-development scenario in accordance with Table 4.05.3(a) of QUDM. As shown in Table 3.3, the flows from the rational method are generally comparable to the results obtained from the XP-Rafts model; therefore, the flows generated from the XP-Rafts model have been adopted for the purposes of this assessment.

Refer to Appendix C for the Rational Method calculations.

3.2.5 Critical Duration Analysis

Storm durations ranging from 15 minutes to 720 minutes were simulated in the XP-Rafts model analysis to determine design flow estimates.

3.3 Hydrologic Analysis

3.3.1 **Pre-development Hydrology**

Percentage impervious figures ranging from 10% to 70% have been adopted for the predevelopment catchments depending on their current development. The Pre-development catchment details are presented in Table 3.3 below:

Catchment	Total Area (ha)	Average Slope (%)	Pervious Area (ha)	Impervious Area (ha)	Percentage Impervious (%)
А	4.74	8.4	4.2634	0.4737	10
В	12.66	2.6	3.7988	8.8639	70
C*	0.83	12.8	0.2506	0.5838	70
X1	0.51	11.7	0.2550	0.2548	50
X2	6.52	4.3	1.9555	4.5629	70
Х3	8.10	4.1	5.6734	2.4315	30
X4	2.16	22.3	0.6475	1.5110	70
X5	0.70	12.3	0.2101	0.4905	70
TOTAL	36.22	-	17.0543	19.1721	-

 Table 3.3
 Pre-development Catchment Details

*Note: Although Catchment C and a portion of Catchment B is currently undeveloped, they were part of Catchment A in the original Council approved Stormwater Report prepared by Gilbert and Sutherland. As the drainage reserve proposed in the Gilbert and Sutherland report for Catchment A has already been constructed, Catchments B and C were therefore assumed as being developed.

Pre-development catchment discharges for the 2 and 100 year ARI are presented in Table 3.4 below:

	XP-Rafts	Results	Rational Method		
Catchment	Q5 (m³/s)	Q100 (m ³ /s)	C ₁₀	Q100 Flow (m ³ /s)	
А	1.300	2.696	0.74	3.03	
В	5.067	8.021	0.84	7.22	
С	0.436	0.654	0.84	0.61	
X1	0.253	0.392	0.80	0.32	
X2	2.701	4.495	0.84	3.12	
X3	1.826	4.111	0.76	3.36	
X4	1.107	1.699	0.84	1.57	
X5	0.362	0.552	0.84	0.51	

 Table 3.4
 Pre-development Catchment Discharges

3.3.2 Post-development Hydrology

As Catchment A was the only undeveloped catchment modelled in the Pre-developed scenario, this is the only Catchment that has seen an increase in impervious area in the Post-developed scenario. A percentage impervious figure of 70% has been adopted for Catchment A in accordance with QUDM Table 4.05.1 for a Urban Residential - High Density development. The Post -development catchment details are presented in Table 3.5 below:

Catchment	Total Area (ha)	Average Slope (%)	Pervious Area (ha)	Impervious Area (ha)	Percentage Impervious (%)
А	4.94	8.4	1.4833	3.4611	70
В	12.46	2.6	3.6682	8.7871	70
C*	0.83	12.8	0.2506	0.5838	70
X1	0.51	11.7	0.2550	0.2548	50
X2	6.52	4.3	1.9555	4.5629	70
Х3	8.10	4.1	5.6734	2.4315	30
X4	2.16	22.3	0.6475	1.5110	70
X5	0.70	12.3	0.2101	0.4905	70
TOTAL	36.22	-	17.0543	19.1721	-

Table 3.5 Post-development Catchment Details

Table 3.6 summarises the post-developed peak flow rates for each catchment.

Table 3.6	Post-Development Outl	et Flow Summary
-----------	-----------------------	-----------------

	XP-Rafts Results			
Catchment	Q5 (m³/s)	Q100 (m³/s)		
А	2.001	3.189		
В	5.021	7.939		
С	0.436	0.654		
X1	0.253	0.392		
X2	2.701	4.495		
Х3	1.826	4.111		
X4	1.107	1.699		
X5	0.362	0.552		

3.3.3 Flow Increase Due to Development

The peak discharges for the pre-development and post-development catchments are shown below in Table 3.7.

	Q5 Flow (m ³ /s)			Q100 Flow (m ³ /s)		
Catchment	PRE	POST	INCREASE	PRE	POST	INCREASE
А	1.300	2.001	53.92	2.696	3.189	18.29
В	5.067	5.021	-0.91	8.021	7.939	-1.02
С	0.436	0.436	0.00	0.654	0.654	0.00
X1	0.253	0.253	0.00	0.392	0.392	0.00
X2	2.701	2.701	0.00	4.495	4.495	0.00

 Table 3.7
 Comparison of Pre and Post-Development Discharges

X3	1.826	1.826	0.00	4.111	4.111	0.00
X4	1.107	1.107	0.00	1.699	1.699	0.00
X5	0.362	0.362	0.00	0.552	0.552	0.00

As can be seen in Table 3.7 above, the proposed development will cause an increase in stormwater flows discharged from Catchment A. This is due to the increase in impervious area and a small increase in total area. Catchment B however shows a small decrease in discharge due to the small reduction in catchment area.

3.4 **Stormwater Quantity Strategy**

It is proposed that no stormwater quantity mitigation measures be implemented for flows discharging from Catchment A. This is due to the fact that the flows will be discharged directly into the Rous River, with the increase in flows being relatively minor compared to the total volume of water flowing in the river. Also, as the flows will be discharged through the proposed open channel, there will be no detrimental effects to the surrounding natural environment caused by the increase in stormwater discharge.

4 Trunk Drainage Infrastructure Analysis

4.1 Background

In the Memorandum Of Understanding between TSC and the developer, it is noted that the existing open drain in the south-western corner of the site is not functioning as intended. This has led to water ponding within the channel leading to issues such as odours, boggy grounds etc. that have been the focus of complaints from current residents.

4.2 Existing Culvert

Currently there are two 1200mm RCP culverts existing beneath Rous River Way located just to the north of the intersection of Rous River Way and Joshua Street. An analysis of this culvert has been carried out utilising the computer program CulvertW. As part of this analysis a tailwater level of 4.7m was assumed, determined form a flood analysis undertaken by Yeats Consulting for the Riva Vue development. The analysis has shown that the existing culvert can convey the entire Q100 flow from the upstream Catchment, X3, without overtopping the road.

Please refer to Appendix F for the CulvertW results.

4.3 **Proposed Works**

As mentioned above, the existing open drain in the south-west corner of the site is not performing as intended leading to complaints from local residents. Therefore, as part of the Stage 4 works, it is proposed to reconstruct this drain to ensure that it functions effectively. Please refer to the Stormwater Management Layout in Appendix D for the indicative location of the reconstructed drainage channel.

Further analysis of the culvert and drainage channel will be conducted at the Development Application stage of the development to ensure that they have the capacity to cater for stormwater flows from both the upstream catchments and the subject site.

5 Stormwater Quality Management Plan

5.1 Introduction

A stormwater quality assessment for the subject site has been previously completed by Gilbert and Sutherland, as part of the existing approval for 96 allotments to the east. Therefore the following strategy only addressed any variations from the original, council approved stormwater quality management plan.

5.2 Relevant Water Quality Objectives

It is understood that the Tweed Shire Council are currently in the process of reviewing their stormwater quality approach and water quality objectives (WQOs). Accordingly, MUSIC modelling has been undertaken to provide an assessment of the treatment effectiveness of the proposed treatment train.

The current TSC water quality objectives for urban development are specified in Table 5.4 of the TUSQMP. These objectives are reproduced in Table 5.1:

Pollutant Types	Dry Year	Average Year	Wet Year
Total Suspended Solids (TSS)	120kg/ha/yr	300kg/ha/yr	400kg/ha/yr
Total Phosphorous (TP)	0.35kg/ha/yr	0.80kg/ha/yr	1.10kg/ha/yr
Total Nitrogen (TN)	1.5kg/ha/yr	4.5kg/ha/yr	6.0kg/ha/yr

Table 5.1TSC Load Reduction Objectives (LRO's)

Development applications must demonstrate that these objectives will be achieved, but it is recognised that the above water quality objectives are near impossible to accomplish.

The Water by Design "Design Objectives for Water Management" are considered to be best practise for water quality treatment in the industry and is endorsed by numerous Local and State Government agencies. These design objectives and adopted targets for stormwater quality management are as follows:

Table 5.2 Water by Design Load Reduction Objectives (LRO's)

Pollutant Types	Site Water Quality Objective
Total Suspended Solids (TSS)	80% Reduction
Total Phosphorous (TP)	60% Reduction
Total Nitrogen (TN)	45% Reduction
Gross Pollutants > 5mm	90% Reduction

Therefore, the Water by Design objectives should be adopted for the basis of the water quality design for the proposed development as it is achievable, practicable and meaningful. It shall also be noted that all South East Queensland Council's, including neighbouring Gold Coast City Council, refer to the Water by Design "Design Objectives for Water Management" and the above water quality objectives/targets.

5.3 **Stormwater Quality Catchments**

The stormwater quality catchments adopted for the MUSIC modelling were in line with the original council approved stormwater quality strategy prepared by Gilbert and Sutherland.

Within their strategy, Gilbert and Sutherland identified two stormwater quality catchments. Catchment A mainly comprised of Stages 1-3 and part of Stage 4, while Catchment B contained the remainder of Stage 4, as well as the proposed drainage reserve and public open space. As part of the original strategy two constructed wetlands (Pond 1 and Pond 2), for Catchments A and B respectively were proposed, as stormwater quality treatment measures.

Appendix E shows DWG. GJ0322.1.5: Catchment Boundaries and Stormwater Treatment Measures prepared by Gilbert and Sutherland.

As pond 1 has already been constructed as part of the existing approval for 96 allotments (Stages 1-3), the areas draining to this pond will not be covered in this report. Therefore Catchment A has remained unchanged, while the original Catchment B has been revised. Refer Appendix B for both the original and the revised catchment boundaries.

Based on the above information the strategy proposed within this report shall address the stormwater quality of the revised Catchment B (Catchments B1 and B2) only.

5.4 **Proposed Treatment Measures**

The adopted treatment measures for the proposed development are detailed below:

5.4.1 Rainwater Tanks

It is proposed to utilise rainwater tanks across the proposed development as the primary source of treatment to all roof areas, providing pollution reduction through both sedimentation and reuse.

Rainwater tanks act as a settling tank, allowing the settlement of course sediments and solids which would otherwise have entered that natural water course. The collected roof water will also be re-used for grey water applications, reducing the demand on town water supply. In order to allow for a reduction in the required bio-retention filter area, the rainwater tanks shall comply with the following:

- Minimum 5000 litre capacity;
- Permanent connection to all toilets and laundry cold water;
- Other connections for outdoor use are optional;
- Automatic pressure pump to replenish tank when level falls below 15%; and
- Comply with TSC's 'Rainwater Tanks' policy.

The following table outlines the rainwater and roof catchment properties adopted for the development.

Table 5.3	Rainwater	Tank	Parameters

	Council Red	quirements	Adopted Parameters		
Development/Lot Type	Connected Roof	Min. Rainwater	Connected Roof	Min. Rainwater	
	Area	Tank Size	Area	Tank Size	
Detached Dwelling	160m ² min.	5,000L	160m ²	5,000L	

With regard to water reuse, based on the TSC water demand management strategy and previous discussions with TSC, a daily demand of 220 L/ET/day has been adopted for each tank, catering for outdoor use, toilets and cold water washing machines.

5.4.2 **Bio-retention Basins**

Two bio-retention basins are proposed to treat the pollutant laden stormwater from the development. These basins will be constructed adjacent and offline to the proposed open drain to the north, and shall ensure that water quality objectives are met before entering the open drainage channel.

The bio-retention basins will accept flow from the underground piped drainage system, retain this runoff within an extended detention depth of 0.35m and percolate this water through the filter media (sandy loam topsoil). Filtered stormwater is then recovered at the base of the filter media via a drainage layer containing perforated pipes. The surface of the bio-retention device is to be densely planted out with locally occurring native ground cover species and shrubs. The vegetation should be selected in consultation with a landscape architect and the approved landscaping plans for the site. A typical section of a bio-retention basin is presented in Figure 5.1. Further details of the bio-retention basins proposed within the development site will be included in future Construction Certificate applications.

Figure 5.1 Bio-retention Basin – Typical Section

(Source: Healthy Waterways WSUD Technical Design Guidelines)

5.5 MUSIC Modelling

The proposed Stormwater Management Layout is shown in Appendix D with details of the modelling procedure described in the following sections.

5.5.1 Meteorological Data

The meteorological data utilised by MUSIC to simulate catchment hydrology processes includes rainfall data (at intervals relevant to the time step being modelled) and average areal potential evapo-transpiration (measured in millimetres per day).

Meteorological data used for the model was the Tweed standard rainfall data – Murwillumbah 58158 (6 minute time step 3/01/1978-31/12/1978) within the Music Model software program.

5.5.2 Source Nodes

The Urban source node properties were adopted for all catchments and were obtained from TSC Development Design Specification D7, Section 7.13.3, Table 1 and are tabulated below in Table 5.4:

Mean EMC (mg/L)							
Land Use		TSS		TP		TN	
		Storm Flow	Base Flow	Storm Flow	Base Flow	Storm Flow	Base Flow
Urban	Mean Std Deviation	2.000 0.145	0.800 0.200	-0.680 0.280	-1.00 0.340	0.193 0.050	-0.100 0.050

Table 5.4 Mean EMC Values for Source Nodes

The relevant runoff parameters were sourced from the TSC Development Design Specification D7, the parameters can be seen listed below in Table 5.5.

Parameter	Urban Land Use
Rainfall threshold (mm)	1
Soil Capacity (mm)	150
Initial Storage (%)	25
Field Capacity (mm)	50
Infiltration Coefficient	50
Infiltration exponent	2
Initial Depth (mm)	50
Daily Recharge Rate (%)	0.65
Daily Drainage Rate (%)	0.85

Table 5.5 Runoff Parameters

5.6 Performance Assessment

The site has been modelled as a number of Urban Residential source nodes, divided into a roof area and urban area. The roof (Urban) nodes discharged into rainwater treatment devices, and then to bio-retention basins before entering the open drain. The urban areas are discharged directly into bio-retention basins prior to the open drain. MUSIC model parameters were adopted according to the Guidelines for Tweed Shire Council. The parameters adopted for the MUSIC model are outlined in Tables 5.6 and 5.8.

Table 5.6 Adopted MUSIC Model Treatment Node Parameters – Source Data

Parameter	Value
Source Data	
Rainfall data setup	Murwillumbah
Model time step	6 Minute
Directly connected impervious area	Road
Soil properties (Runoff generation parameter)	Urban Residential

Catchment	Detached Dwelling	Roof Area (ha)	Urban Area (ha)	Total Area (ha)
B1	9	0.144	0.936	1.08
B2	48	0.768	4.042	4.81

Table 5.8	Adopted MUSIC Model Treatment Node Parameters – Treatment De	evices

Parameter	Value
Treatment Devices	
TYPICAL BIO-RETENTION DETAILS	Extended Detention Depth = 0.35m (Basin)
	Filter Depth = 0.6m
	Filter Median Particle Diameter = 0.45mm
	Saturated Hydraulic Conductivity = 180mm/hr
Bio-Retention Basin B1	Surface Area = $320m^2$
	Filter Area = $256m^2$
Bio-Retention Basin B2	Surface Area = $1,280m^2$
	Filter Area = $1,024m^2$
Rainwater Tank Details – Roof B1	Volume below overflow pipe = 40.5 m^3
	Permanent depth = 0.2m
	Surface Area = $22.5m^2$
	Overflow pipe diameter = 270mm
	Assumed demand = 2kL/day
Rainwater Tank Details – Roof B2	
	Volume below overflow pipe = 216 m^3
	Permanent depth = 0.2m
	Surface Area = 120m ²
	Overflow pipe diameter = 624mm
	Assumed demand = 10.6kL/day

5.7 Water Quality Objectives Performance

Table 5.9 summarises the load reduction by MUSIC using the WSUD strategy outlined above.

Parameter	Sources	Residual Load	Reduction (%)
Total Suspended Solids (kg/yr)	7300	998	86.3
Total Phosphorous (kg/yr)	17.6	5.48	68.8
Total Nitrogen (kg/yr)	111	61.2	45.0
Gross Pollutants (kg/yr)	1530	0	100.0

Table 5.9Mitigated Pollution Export Concentrations

As Tables 5.9 illustrates, the water quality load based reduction objectives from the Water by Design guidelines of 80% for Total Suspended Solids, 60% for Total Phosphorous, 45% for Total Nitrogen and 90% for Gross Pollutants have been achieved for the proposed development. The MUSIC Modelling schematic and pollutant concentration results are presented in Appendix G.

As described in Section 5.2 of this report, the current TSC water quality objectives for urban development are considered to be impracticable and are near impossible to accomplish. The Water by Design "Design Objectives for Water Management" are considered to be best practice for water quality treatment in the industry and is endorsed by numerous Local and State Government agencies.

We believe the proposed method of water quality treatment demonstrates the most meaningful solution and requires minimal ongoing maintenance by Council and provides a high level of stormwater treatment.

6 Monitoring and Maintenance

6.1 Monitoring

A monitoring program, including reporting, will be established to determine the pollutant removal efficiencies of the proposed treatment devices, as per section D7.A12 of the TSC Development Design Specification - D7 Stormwater Quality.

6.2 Maintenance

Proper maintenance of the bio-retention basins is critical in ensuring that filtering capacity of the system will not be reduced. This will be primarily achieved by maintaining complete vegetation covering of the soil throughout the length or area of the system, and prevent activities that could compact the soil and limit the infiltration rate of water through it. Other maintenance works will include:

- Watering, replanting and weeding to maintain vegetation cover especially during establishment;
- Mowing of the grassed surface;
- Removal of litter and debris from the bio-retention basin surface; and
- Checking for channelling or erosion.

Maintenance works, including but not limited to the collection of litter, mowing and maintenance of the buffer strips, will be the responsibility of the property owners and will be undertaken on a regular basis. Major stormwater systems including the proposed drainage channel and piped stormwater network shall be owned and maintained by Council.

In order to ensure the integrity and durability of the treatment devices in the early stages of the development, it is proposed to turf the bio-retention basins temporarily to cater for the house construction phases of the project. Once the house construction phase reaches 90% complete for the contributing treatment device catchment, the temporary turf will be removed and the bio-retention basins will be completed by the developer, with the nominated vegetation and surface works.

7 Summary and Conclusion

A conceptual stormwater management strategy has been developed to manage potential impacts from the proposed Stage 4 of the Riva Vue Estate residential development located Barnby Street, Murwillumbah.

The stormwater management strategy has the following components:

- No onsite detention is proposed due to the proximity to the Rous River and the relatively minor increase in Stormwater discharge from the post-developed site;
- Construction of a piped drainage system to cater for the minor 5 year ARI storm;
- Ensure overland flow paths are able to accommodate the major 100 year ARI storm;
- Provide a temporary drainage channel through the site, within the future road reserve and ensure adequate capacity during future detail design; and
- Deemed to Comply stormwater quality treatment measures incorporating roof water tanks and bio-retention basins utilised to treat flows before discharging from the subject site to the Rous River.

It is considered that the development of the site, with the implementation of the stormwater management strategy developed in this report, will result in no worsening in drainage conditions upstream or downstream of the site.

8 References

Healthy Waterways, Water Sensitive Urban Design, Technical Design Guidelines for South East Queensland, Version 1 June 2006.

Tweed Shire Council, 2000, Tweed Urban Stormwater Quality Management Plan.

Tweed Shire Council, 2005, Development Design Specification D7 – Stormwater Quality, Version 1.3

"Queensland Urban Drainage Design Manual (QUDM)", Volume 1, Second Edition 2007

Gilbert & Sutherland Pty Ltd, 2004, "Acid Sulphate Soil Assessment and Management Plan, Stormwater Management Plan. Erosion and Sedimentation Control Plan, Agricultural Suitability Assessment and Preliminary Site Contamination Assessment", for the proposed Residential Development, Barnby Street, Murwillumbah. Appendix A Stage 4 Concept Plan

,		RE	FER T	O INSI	ET A FOR CONTINUATION
				116	
				115	T
	1			114	
-	4			183	
T	-	CORA		1/12	
				111	
-1 1 58:	- 1 <u>42</u>			,10	
-+-				109	
-+	119,107	-		⁶ 0,	
•	1133	-		101	
	100			100	
		v		10,1	
	-	124		,0 ^A	
G	3	1 ³		103	
				102	
30.	15	2,			
			5	124	
ЛТ			\wedge	125	
, ₁ 9		LE	.GEND		
1.				= = S'	
					DT BOUNDARY - SUBJECT TO DETAILED
-	/	<u></u>	<u></u>	SI <u></u> T(URVEY & DESIGN DP/TOE OF BATTER
3	-	2			EMPORARY DRAINAGE CHANNEL /
-			///////	PI	ROPOSED OFFLINE BIO-RETENTION BASIN
- 200	-			RI	PARIAN BUFFER ZONE
-	_		<u> </u>	Fl	JTURE DRAINAGE CORRIDOR AND PARK
	TITLE				
		IAG	E 4 UU	INCEP	
5	TASK	ΒΥ	INITIAL	DATE	APPROVED RPEQ No N/A
RALIA	REVIEW DESIGN	A.C. T.W.		02.11.11 02.11.11	DRAWING NUMBER REVISION
s.com.au	DRAWN	T.W.		02.11.11	YC0291-SK18 B

Appendix B Stormwater Catchment Plans

B GENERAL AMENDMENTS

DESCRIPTION

A ORIGINAL ISSUE

T.W. 15.06.11

K.E. 12.05.11

DRAWN DATE

SCALE

60 40

80

A1

NIVA VUL LOTATL	
MURWILLUMBAH, NSW 2484	

25	TASK	BY	INITIAL	DATE	APPROVED RPEQ No	N/A
	REVIEW	S.W.		12.05.11	DRAWING NUMBER	REVISION
RALIA	DESIGN	S.S.		12.05.11	VC0201 SK00	0
s.com.au	DRAWN	K.E.		12.05.11	1C0291-5K09	

PRE-DEVELOPED CATCHMENT PLAN

	EXISTING CONTOURS (0.5m INTERVALS)
(A)	CATCHMENT NAME
	CATCHMENT BOUNDARY
	OVERLAND FLOW
$\rightarrow \rightarrow -$	EXISTING DRAINAGE CHANNEL
	STAGE 4 BOUNDARY

11

LEGEND

CATCHMENT TABLE		
CATCHMENT	AREA (Ha)	IMP. AREA (Ha)
A	4.7371	0.4737
В	12.6627	8.8639
C	0.8344	0.5838
X1	0.5098	0.2548
X2	6.5184	4.5629
X3	8.1049	2.4315
X4	2.1585	1.5110
X5	0.7006	0.4905
TOTAL	36.2264	19.1721

DESCRIPTION

DRAWN DATE

	-		
LEVEL 1, 193	FERRY ROAD S	SOUTHPORT QLD 4	215 AUSTRA
07 5571 2232	F 07 5503 1672	info@yeats.com.au	www.yeats.c

	ENN	162		X4 X5	0.7006	0.4905	
	2111	12		TOTAL	36.2263	22.0827	
	The						
2111	$f \geq \epsilon$		GENE)			
\leq		. – –	- 20.0	- EXIS	ING CONTOURS ().5m INTERVALS)	
		-	A	CATC	HMENT NAME		
				CATC	HMENT BOUNDAR	Y	
		4001 . 0014 f .	\Rightarrow	OVER	LAND FLOW DIRE	CTION	
		\rightarrow	\rightarrow -	- EXIS	TING DRAINAGE CH	HANNEL	
22	Made			- SITE	BOUNDARY		
		\rightarrow	\rightarrow -	- PROP	OSED DRAINAGE	CHANNEL	
		<u>1111111111</u>		TOP/	TOE OF BATTER		
				STAC	E 4 BOUNDARY		
PTUAL				- LOT E	OUNDARY - SUB	JECT TO DETAILED	
				SURV	EY & DESIGN		
	'	0011					
•							
5	TASK	BY	INITIAL	DATE	APPROVED	RPEQ No	N/A
	REVIEW	S.W.		12.05.11	DRAWING NUMBER		REVISION
L I A :om.au	DESIGN	S.S.		12.05.11	YC029	1-SK11	D
	URAWN	N.E.		12.05.11	10020		

CATCHMENT TABLE		
CATCHMENT	AREA (Ha)	IMP. AREA (Ha)
А	4.9444	3.4611
В	12.4553	8.7871
C	0.8344	0.5838
X1	0.5098	0.2548
X2	6.5184	4.5629
X3	8.1049	2.4315
X4	2.1585	1.5110
X5	0.7006	0.4905
TOTAL	36.2263	22.0827

CATCHMENT TABLE	

Appendix C Rational Method Calculations

Project:	Riva Vue
Date:	13-May-11
Designed:	K.Ermolova
Comments:	Pre Developed Catchment

PARAMETERS	VALUE	
Catchment Name Catchment Size	X1 0.51 ha	
C10 Coefficient of Runoff	0.80	
Equal Area Calculation	Equation 5.05.03 from QUDM	
Area under slope Length (km) of flow path from catchment divide to outlet (L)	1735.0522 m2 172.22 m	
Equivalent Height of Triangle Equal Area Slope	20.15 m 117.00 m/km	
Bransby-Williams' Equation	Equation 5.05.03 from QUDM	
Length (km) of flow path from catchment divide to outlet (L) Equal Area Slope of stream slope path (S) Factor of proportionality (F) Time of concentration (tc)	0.17 km 117.00 m/km 92.7 6.6 mins	
Total Time of Concentration	Overland flow tc (E12) + Stream flow tc (E20)	
Total time of Conentration (tc)	6.6 mins	

Rational Method for Peak Catchment flow

Coefficient of ARI Rainfall Intensity Rainfall Depth Fy Discharge Runoff (mm/h) (mm) (m³/s) 3 month 0.04 113.80 0.54 0.09 1 12.50 0.67 2 144.16 15.83 0.81 0.65 0.13 0.74 5 177.18 19.46 0.18 0.92 10 0.80 0.22 195.62 21.48 1.00 20 221.19 24.29 1.07 0.86 0.27 50 254.20 27.91 1.01 0.81 0.29 100 279.05 30.64 1.02 0.82 0.32

Project:	Riva Vue
Date:	13-May-11
Designed:	K.Ermolova
Comments:	Pre Developed Catchment

PARAMETERS	VALUE
Catchment Name Catchment Size C10 Coefficient of Runoff	X2 6.52 ha 0.84
Equal Area Calculation	Equation 5.05.03 from QUDM
Area under slope Length (km) of flow path from catchment divide to outlet (L) Equivalent Height of Triangle Equal Area Slope	3945.0298 m2 426.11 m 18.52 m 43.45 m/km
Bransby-Williams' Equation	Equation 5.05.03 from QUDM
Length (km) of flow path from catchment divide to outlet (L) Equal Area Slope of stream slope path (S) Factor of proportionality (F) Time of concentration (tc)	0.43 km 43.45 m/km 92.7 15.4 mins
Total Time of Concentration	Overland flow tc (E12) + Stream flow tc (E20)
Total time of Conentration (tc)	15.4 mins

Rational Method for Peak Catchment flow

Coefficient of ARI Rainfall Intensity Rainfall Depth Fy Discharge Runoff (mm/h) (mm) (m³/s) 3 month 0.41 0.56 0.81 1 79.65 20.45 0.67 2 101.27 26.00 0.81 0.68 1.25 0.77 5 125.63 32.25 1.76 0.92 10 0.84 2.12 139.39 35.78 1.00 20 158.26 40.63 1.07 0.90 2.58 50 182.74 46.91 1.01 0.85 2.81 100 201.23 51.66 1.02 0.86 3.12

Project:	Riva Vue
Date:	13-May-11
Designed:	K.Ermolova
Comments:	Pre Developed Catchment

PARAMETERS	VALUE
Catchment Name Catchment Size C10 Coefficient of Runoff	X3 8.10 ha 0.76
Equal Area Calculation	Equation 5.05.03 from QUDM
Area under slope Length (km) of flow path from catchment divide to outlet (L) Equivalent Height of Triangle Equal Area Slope	4583.6015 m2 475.69 m 19.27 m 40.51 m/km
Bransby-Williams' Equation	Equation 5.05.03 from QUDM
Length (km) of flow path from catchment divide to outlet (L) Equal Area Slope of stream slope path (S) Factor of proportionality (F) Time of concentration (tc)	0.48 km 40.51 m/km 92.7 17.1 mins
Total Time of Concentration	Overland flow tc (E12) + Stream flow tc (E20)
Total time of Conentration (tc)	17.1 mins

Rational Method for Peak Catchment flow

Coefficient of ARI Rainfall Intensity Rainfall Depth Fy Discharge Runoff (mm/h) (mm) (m³/s) 3 month 0.44 75.90 0.51 0.87 1 21.58 0.67 2 96.54 27.45 0.81 0.62 1.34 0.70 5 119.92 34.10 1.89 0.92 10 0.76 2.28 133.15 37.86 1.00 20 151.26 43.01 1.07 0.81 2.77 50 174.75 49.69 1.01 0.77 3.02 100 192.52 54.74 1.02 0.78 3.36

Project:	Riva Vue
Date:	13-May-11
Designed:	K.Ermolova
Comments:	Pre Developed Catchment

PARAMETERS VALUE Catchment Name X4 Catchment Size 2.16 C10 Coefficient of Runoff 0.84 Equal Area Calculation Equation 5.05.03 from QUDM

Area under slope	429.1478 m2	
Length (km) of flow path from catchment divide to outlet (L)	61.979 m	
Equivalent Height of Triangle	13.85 m	
Equal Area Slope	223.43 m/km	

5.0 mins

Time of Concentration

Time of Conentration (tc)

Rational Method for Peak Catchment flow

ARI	Rainfall Intensity	Rainfall Depth	Fy	Coefficient of Runoff	Discharge
	(mm/h)	(mm)			(m ³ /s)
3 month					0.21
1	125.51	10.46	0.67	0.56	0.42
2	158.84	13.24	0.81	0.68	0.65
5	194.73	16.23	0.92	0.77	0.90
10	214.70	17.89	1.00	0.84	1.08
20	242.49	20.21	1.07	0.90	1.31
50	278.32	23.19	1.01	0.85	1.42
100	305.27	25.44	1.02	0.86	1.57

Q = 0.00278 x C x I x A

Project:	Riva Vue
Date:	13-May-11
Designed:	K.Ermolova
Comments:	Pre Developed Catchment

PARAMETERS VALUE Catchment Name X5 Catchment Size 0.70 C10 Coefficient of Runoff 0.84 Equal Area Calculation Equation 5.05.03 from QUDM Area under slope 977.226 m2 Length (km) of flow path from catchment divide to outlet (L) 125.92 m

5.0 mins

Equivalent Height of Triangle15.52 mEqual Area Slope123.26 m/km

Time of Concentration

Time of Conentration (tc)

Rational Method for Peak Catchment flow

ARI	Rainfall Intensity	Rainfall Depth	Fy	Coefficient of Runoff	Discharge
	(mm/h)	(mm)			(m ³ /s)
3 month					0.07
1	125.51	10.46	0.67	0.56	0.14
2	158.84	13.24	0.81	0.68	0.21
5	194.73	16.23	0.92	0.77	0.29
10	214.70	17.89	1.00	0.84	0.35
20	242.49	20.21	1.07	0.90	0.42
50	278.32	23.19	1.01	0.85	0.46
100	305.27	25.44	1.02	0.86	0.51

Q = 0.00278 x C x I x A

Project:	Riva Vue
Date:	13-May-11
Designed:	K.Ermolova
Comments:	Pre Developed Catchment

PARAMETERS	VALUE	
Catchment Name Catchment Size	A 4.74 ha	
C10 Coefficient of Runoff	0.74	
Equal Area Calculation	Equation 5.05.03 from QUDM	
Area under slope	757.9032 m2	
Length (km) of flow path from catchment divide to outlet (L)	134.59 m	
Equivalent Height of Triangle	11.26 m	
Equal Area Slope	83.68 m/km	
Bransby-Williams' Equation	Equation 5.05.03 from QUDM	
Length (km) of flow path from catchment divide to outlet (L)	0.13 km	
Equal Area Slope of stream slope path (S)	83.68 m/km	
Factor of proportionality (F)	92.7	
Time of concentration (tc)	4.4 mins	
Total Time of Concentration	Overland flow tc (E12) + Stream flow tc (E20)	
Total time of Conentration (tc)	5.0 mins	

Rational Method for Peak Catchment flow

Coefficient of ARI Rainfall Intensity Rainfall Depth Fy Discharge Runoff (mm/h) (mm) (m³/s) 3 month 0.41 10.46 0.50 0.82 1 125.51 0.67 2 158.84 13.24 0.81 0.60 1.25 1.74 5 194.73 0.68 16.23 0.92 10 0.74 2.09 214.70 17.89 1.00 20 242.49 20.21 1.07 0.79 2.53 50 278.32 23.19 1.01 0.75 2.74 100 305.27 25.44 1.02 0.75 3.03

Project:	Riva Vue
Date:	13-May-11
Designed:	K.Ermolova
Comments:	Pre Developed Catchment

PARAMETERS

VALUE

488.88 m

12.63 m

25.84 m/km

10.0 mins

	Equation 5.05.03 from QUDM
0.84	
2.00 110	
12.66 ha	
В	
	B 12.66 ha 0.84

Area under slope 31 Length (km) of flow path from catchment divide to outlet **(L)** Equivalent Height of Triangle Equal Area Slope

Time of Concentration

Time of Conentration (tc)

Rational Method for Peak Catchment flow

ARI	Rainfall Intensity	Rainfall Depth	Fy	Coefficient of Runoff	Discharge
	(mm/h)	(mm)			(m ³ /s)
3 month					0.95
1	96.36	16.06	0.67	0.56	1.91
2	122.28	20.38	0.81	0.68	2.93
5	150.94	25.16	0.92	0.77	4.10
10	167.03	27.84	1.00	0.84	4.94
20	189.23	31.54	1.07	0.90	5.98
50	217.95	36.32	1.01	0.85	6.50
100	239.60	39.93	1.02	0.86	7.22

Q = 0.00278 x C x I x A

Project:	Riva Vue
Date:	13-May-11
Designed:	K.Ermolova
Comments:	Pre Developed Catchment

PARAMETERS

VALUE

5.0 mins

Catchment Size C10 Coefficient of Runoff	0.83 ha 0.84	
Equal Area Calculation		Equation 5.05.03 from QUDM
Area under slope	224 7762 m2	

Area brider slope224.7762III2Length (km) of flow path from catchment divide to outlet (L)59.36mEquivalent Height of Triangle7.57mEqual Area Slope127.58m/km

Time of Concentration

Time of Conentration (tc)

Rational Method for Peak Catchment flow

ARI	Rainfall Intensity	Rainfall Depth	Fy	Coefficient of Runoff	Discharge
	(mm/h)	(mm)			(m ³ /s)
3 month					0.08
1	125.51	10.46	0.67	0.56	0.16
2	158.84	13.24	0.81	0.68	0.25
5	194.73	16.23	0.92	0.77	0.35
10	214.70	17.89	1.00	0.84	0.42
20	242.49	20.21	1.07	0.90	0.51
50	278.32	23.19	1.01	0.85	0.55
100	305.27	25.44	1.02	0.86	0.61

Q = 0.00278 x C x I x A

Appendix D Stormwater Management Layout

Appendix E

Gilbert & Sutherland - Catchment Boundaries and Stormwater Treatment Measures

Appendix F Culvert Analysis

Appendix G MUSIC Modelling Inputs

Treatment Train Effectiveness - Receiving Node			
Flow (ML/yr) Total Suspended Solids (kg/yr) Total Phosphorus (kg/yr) Total Nitrogen (kg/yr) Gross Pollutants (kg/yr)	Sources 71.8 7.30E3 17.6 111 1.53E3	Residual Load 67.9 998 5.48 61.2 0.00	% Reduction 5.3 86.3 68.8 45.0 100.0
			b

Yeats Consulting Pty Ltd Level 1, 193 Ferry Road Southport Qld 4215 Email: info@yeats.com.au